
Statistical quantum mechanics does not pretend to describe the 
individual system and its evolution in time completely… it’s 
unavoidable to look elsewhere for a complete description of  the 
individual system. 

A. Einstein, Reply to 
criticisms, 1949

The Pilot-Wave Theory

J.S. Bell, Six possible worlds of  quantum mechanics, Speakable and Unspeakable in 
Quantum Mechanics 

Ignorance Interpretation 

Wave Particle duality 
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Write the wave function in the polar form:

For the plane-wave type solution: 

(1)

(2)

Actual position of  the particle

The so called hidden variable!



this can be equivalently re-written (in terms of  the wave function itself) as 
follows:

(3)

(4)

Multiply eq. 3 with and eq. 4 with , then subtract:

This has the form of  the continuity equation:

Probability density current:



Analogous to Electrodynamics 

Since

4

Eq. 4 becomes:

Which is the same equation postulated by Bohm for the velocity of  particle!

It can be shown that:

If then it will stay

-Tr
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Particle in a Box (PIB) with Pilot-wave theory

Stationary states:

where is the first eigenstate with 
ground level energy E1

The complex phase of  the wave function is: 

This doesn’t depend on x at all, so the particle velocity, according to 
Bohm’s equation is zero. The particle, that is, just sits there at rest. This, 
as it turns out, is characteristic of  so-called stationary states, which are 
indeed aptly named according to this theory.

To see some non-trivial dynamics in the particle-in-a-box system, 
we need only let the quantum state be a superposition of  energy 
eigenstates. For example:

Then particle velocity as a function of  its position is:







Other single particle examples

Gaussian wave packet:

Initial state

Written in polar form:

we can identify the complex 
phase S(x, t) of  the wave 
function as this, ignoring the 
contribution of  N(t) to the 
complex phase:

then we have

It is not hard to show that this differential equation is solved by:

or

Evolution in time



Superposition of  two Gaussian wave packets at double slit 



Measurement in Pilot-wave theory

Review of  Measurement Problem in PIB example:

Interaction energy

If  the particle is in an eigenstate:

After the measurement time t, the state of  the PIB-Pointer is:

No problem there. 

But if  the particle was in 
a superposition state:

then it infects the measuring apparatus with its superposition! 
Schrödinger’s cat

Also according to the pilot wave theory the PIB-Pointer wave function 
ends up in an entangled superposition state as stated above. 

But there is no measurement problem in pilot wave 
theory! [Why?]



According to the pilot-wave theory the wave function alone doesn’t 
provide a complete description of  the physical situation. There is, in 
addition, the actual position X(t) of  the PIB and -crucially here- the 
actual position Y(t) of  the pointer. 



Measurement in Bohmian mechanics

PIB-Pointer wave function 

PIB wave function 

Initial PIB wave function 

In long t limit where the measurement is done 



Contexuality

Do pre-measurement values exist according to the 
pilot wave theory?

Yes and no and it depends!

Location of  particles in space is real and they exist 
independent of  our measurements. Therefore their 
detection reveals the pre-measurement values.

Momentum of  particles also have real pre-measurement 
values. But its measurement doesn’t necessarily reveal 
the pre-measurement value but changes it during 
measurement interaction.

Other physical properties like Energy, Spin, … 
don’t have any pre-measurement values! 

In pilot-wave theory it’s not weird that a quantity 
such as spin didn’t exist prior to the measurement.

In pilot-wave theory the measurement outcomes 
depend on initial conditions (actual location of  
particles and pointers, initial wave function) and the 
measurement method of  the quantity as well. 



The “no hidden variables” theorems, invariably apply 
only to “non-contextual” hidden variables theories. 
That is why those theorems do not in an any
sense rule out the pilot-wave theory. 



The Many-Particle Theory and Nonlocality

The pilot-wave theory is non-local in the following sense: the 
velocity of  each particle, at a given instant, depends on the 
instantaneous positions of  all other particles (at least when there 
is entanglement). 

Example: two-particle system with wave function

The velocity of  particle 1:

Example: two “particle-in-a-box” sub-systems that are well-separated in 
space (so the origins of  the x1 and x2 coordinate systems are far apart 
from each other) in the entangled state:

where, as usual,
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proof that any hidden variable account of quantum mechanics must have this extraordinary
character.[∗] It would therefore be interesting, perhaps, to pursue some further ‘impossibility
proofs’, replacing the arbitrary axioms objected to above [namely, “non-contextuality”] by
some condition of locality, or of separability of distant systems [13].

The “[∗]” points to a footnote which was added before the delayed publication of the
paper: “Since the completion of this paper such a proof has been found: J.S. Bell,
Physics 1, 195, [1964]”. That is, between the completion of this first paper in 1964,
and its publication in 1966, Bell had already discovered and published the answer
to his own question: would it be possible to construct a hidden variable completion
of QM, with all of the virtues of the pilot-wave theory, but without the troubling
non-local character?

His answer is the subject of Chap.8.

Projects:

7.1 Show that Eq. (7.6) really is equivalent to Eq. (7.5).
7.2 Show that the probability distribution P(x, t) for an ensemble of particles

moving with velocities v(x, t) should satisfy Eq. (7.20). Hint: argue, based on
this picture

that all the trajectories (shown in the figure as blue lines on a space-time
diagram) in dx at time t will be in dx ′ at time t + dt , i.e., P(x + v(x, t)dt, t +
dt)dx ′ = P(x, t)dx . This can (with some additional work) then be shown to
be equivalent to

∂P(x, t)
∂t

= − ∂

∂x
[P(x, t)v(x, t)] . (7.60)

7.3 Work through the derivation of Eq. (7.12) – the quantum continuity equation
for a particle in three dimensions – from the time-dependent Schrödinger
equation, and thereby confirm the expression in Eq. (7.14) for the quantum
probability current.

7.4 Show that, indeed, Eq. (7.17) is equivalent to the earlier expressions for the
particle velocity in the pilot-wave theory.

7.5 Confirm that Eq. (7.30) really solves Eq. (7.29).
7.6 Massage Eq. (7.32) into polar form. Let Mathematica numerically solve the

differential equation dX
dt = !

m
∂S
∂x to recreate trajectories like the ones shown in

Fig. 7.4.
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7.7 For the toy model of a measurement discussed in Sect. 7.4, Schrödinger’s
equation reads

i!∂!

∂t
= Ĥ! (7.61)

with Ĥ = λĤx p̂y , where, in turn, Ĥx = − !2

2m
∂2

∂x2 + V (x) and p̂y = −i! ∂
∂y .

Show that the x- and y-components of the quantum probability current can be
written

jx = −λ!2

m
Re

[
!∗ ∂

∂x
∂

∂y
!

]
(7.62)

and

jy =
λ!2

m
∂!∗

∂x
∂!

∂x
(7.63)

respectively. That is, show that the Schrödinger equation implies the continuity
equation

∂|!|2
∂t

= −∂ jx
∂x

− ∂ jy
∂y

(7.64)

with jx and jy as given above.
7.8 Use the results of the previous Project to argue that, in the pilot-wave theory,

the velocities of the two particles involved in the toy model of measurement
are given by

dX
dt

= −λ!2

m
Re

[
∂
∂x

∂
∂y!

!

]

(7.65)

and
dY
dt

= λ!2

m

∣∣∣∣
∂!/∂x

!

∣∣∣∣
2

. (7.66)

Let Mathematica numerically solve these differential equations to find some
example trajectories X (t), Y (t). Use the known solution of Schrödinger’s
equation for this problem:

!(x, y, t) =
∑

i

ciψi (x)φ(y − λEi t). (7.67)

7.9 Use your Mathematica program from the previous Project to demonstrate the
“contextuality” of energymeasurements in the pilot-wave theory. In particular,
find specific initial conditions that lead to different outcomes for the energy
measurement for different values of λ. (You can do this by trial and error: just
pick some random values for X (0) and Y (0) and then fiddle with the value of
λ. You probably won’t have to try too many different values of λ before you
find a couple of values that produce distinct values of En ≈ Y (t)

λt .)
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7.10 Show that Eq. (7.48) really solves the (time-dependent) Schrödinger equation,
with V (x) given by Eq. (7.45), as long as the packet width σ and the frequency
ω are related as in Eq. (7.47).

7.11 Calculate jx1 and jx2 for the wave function in Eq. (7.55).
7.12 In the passage quoted in Sect. 7.7, Heisenberg refers to “some strange quantum

potentials introduced ad hoc by Bohm”. This is a reference to a slightly dif-
ferent formulation of the pilot-wave theory, in terms of which Bohm presents
the theory in his 1952 papers. To see how this works, take a time derivative
of Eq. (7.6) to derive an expression for the acceleration of the particle. It is
important here that the right hand side of Eq. (7.6) depends on time in two
different ways, so one must use the “convective derivative” d

dt = ∂
∂t + dx

dt
∂
∂x .

If all goes well you should be able to write the equation describing the motion
of the particle in the somewhat more Newtonian-mechanical-like form,

ma = − ∂

∂x
(V + Q) (7.68)

where V is the regular (“classical”) potential energy function (which appears
in Schrödinger’s equation) and then Q is a new, so-called “quantum potential”
which depends on the structure of the wave function ψ. Find the expression
for Q. (It can be expressed most simply in terms of the R in ψ = ReiS .) Think
about how to understand, from this more classical perspective on the motion of
the particle, how (for example) the electron particle in a ground-stateHydrogen
atom remains at rest.

7.13 The previous Project might suggest that, in addition to the kinetic energy
K = 1

2mv2 and classical potential energy V (x), a particle in the pilot-wave
theory also possesses some “quantum potential energy”, Q. Would the inclu-
sion of this “quantum potential energy” make it possible to regard the mea-
surement of the energy of a particle as revealing a pre-existing energy value?
In other words, does the possibility of re-formulating the theory in this more
Newtonian-mechanical-like way undermine our conclusion that energy is, in
the pilot-wave theory, contextual?

7.14 Suppose we define the total energy of a particle in the pilot-wave theory as
E = K + V + Q as suggested in the previous Project. Is the total energy E
of a particle conserved according to the theory?

7.15 One of Heisenberg’s criticisms of Bohm’s theory is that “[i]n measurements of
the position of the particle, Bohm takes the ordinary interpretation of the exper-
iments as correct; in measurements of the velocity he rejects it.” Heisenberg
here means that, in the pilot-wave picture, position is non-contextual whereas
velocity is contextual. Heisenberg seems to think that this is the result of a
choice and is therefore arbitrary and unbelievable. But we have shown in the
Chapter that the contextuality of (for example) momentum and energy is not
a choice at all, but simply a consequence of the basic dynamical postulates of
the theory. Complete the rebuttal of Heisenberg’s criticism by showing that
position measurements just do, according again to the dynamical postulates,
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reveal pre-existing position values. (Hint: consider a particle with wave func-
tion ψ0(x)whose position is to be measured using an apparatus whose pointer
has an initial wave function φ(y) and interacts with the particle according to
Ĥint = λx̂ p̂y . Show that the x- and y-components of the quantum probabil-
ity current can be taken to be jx = 0 and jy = λx!∗! so that dX/dt = 0
and dY/dt = λX . This implies that the final displacement of the pointer is
proportional to X , the actual position of the particle whose position is being
measured.)

7.16 Read through Bohm’s 1952 papers [3] and report on anything you find inter-
esting or surprising.

7.17 Read through Ref. [14], “The pilot-wave perspective on quantum scattering
and tunneling,” and summarize its main points.

7.18 Read through Ref. [15], “The pilot-wave perspective on spin,” and summa-
rize its main points. In particular, explain in detail how the pilot-wave theory
accounts for the EPR-Bohm correlations. Bell says that the theory resolves
the EPR paradox “in the way which Einstein would have liked least”. What
exactly does he mean?

7.19 Can the pilot-wave theory be diagnosed as “nonlocal” using Bell’s formulation
of locality (or the slightly modified formulation) from Chap.1? How about
using the related necessary condition for locality that we developed in Chap. 5?

7.20 In the text, the non-locality of the pilot-wave theory is explained in terms of
an entangled two-particle state (with a measurement of one of the particles
non-locally affecting the motion of the other, distant particle). But we saw
in Chap.4 that textbook quantum theory is already apparently non-local in
the simpler, single-particle “Einstein’s boxes” scenario. Is any non-locality
involved in the pilot-wave theory’s account of “Einstein’s boxes”? Explain.

7.21 Recall the passage quoted in Sect. 6.6, in which (the textbook author) David
Griffiths explains three frequently-encountered attitudes toward quantum
mechanics: the “realist” position, the “orthodox” position, and the “agnos-
tic” position. Would Griffiths classify the pilot-wave theory as “realist”? Note
that your answer will depend on whether or not you think he intends what
he says about a position measurement, by way of defining what he means by
“realist”, to apply just to position measurements, or instead to apply more
generally to measurements of any property. Why do you think Griffiths isn’t
more explicit about this issue, namely, whether, to count as “realist”, a the-
ory should merely say that position measurements reveal pre-existing position
values, or instead must say that a measurement of any quantity must reveal its
pre-existing value?

7.22 In the passage quoted in Sect. 6.6, Griffiths seems to define “realism” as mean-
ing that a theory posits specifically non-contextual hidden variables (at least for
position). The pilot-wave theory would count as “realist” in this sense (if we
interpret this notion of “realism” as requiring non-contextual hidden variables
only for positions... obviously the pilot-wave theory would not be “realist” if
that is taken to require non-contextual hidden variables for not only position,
but also momentum, energy, etc.). But there would seem to be a more basic


